1,152 research outputs found

    The southward transport of sub-mesoscale lenses of Bass Strait Water in the centre of anti-cyclonic mesoscale eddies

    Full text link
    Dense shelf water from Bass Strait, southeast Australia, is presently understood to travel northward along the continental shelf, and disperse eastward into the Tasman Sea. Here we report the unexpected discovery by autonomous gliders of lenses of shelf water ∼40 km in diameter and 200-300 m tall at depth in the center of three ∼200 km diameter anti-cyclonic eddies. Reanalysis of 2420 vertical profiles off the continental slope in the western Tasman Sea since 1982 found only 3 distinct patches of Bass Strait Water (BSW), all with positive dynamic height anomalies indicative of anti-cyclones. Through a yet to be understood process, BSW separates from the continental slope and forms a mid-depth lens that aligns vertically with the larger anti-cyclonic mesoscale eddy; and remains at the center of the eddy for 6+ months as it is advected 700 km southward. This pathway subducts shelf water into the ocean interior, and provides a link between mesoscale circulation and shelf water transport. The BSW that is captured in anti-cyclones advects south past the east coast of Tasmania, with some moving into the eastern Indian Ocean. Copyright 2012 by the American Geophysical Union

    Modeling photoinhibition-driven bleaching in Scleractinian coral as a function of light, temperature, and heterotrophy

    Full text link
    It has been proposed that corals with symbiotic algae (Symbiodinium) bleach under thermal stress due to temperature-dependent inactivation of the Rubisco protein that impairs CO2 uptake, causing a backlog of electrons that result in the formation of damaging Reactive Oxygen Species. We present a numerical model of this mechanism of photoinhibition for symbiotic algae residing within coral tissue. The resulting rate of bleaching depended on temperature, light intensity, and the rate of heterotrophic feeding. The model was validated using three independently published experimental data sets. The model was capable of capturing both the diurnal change in the state of the photosystem, as well as changes in the symbiont population and the coral host caused by different temperature, light, and feeding treatments. Elevated temperatures and light led to a degradation of the photosystem and the expulsion of symbiont cells. If the coral fed heterotrophically, this degradation of the photosynthetic apparatus was reduced, but still a clear decrease in maximum quantum yield (Fv: Fm) and cell numbers was observed when the coral was exposed to elevated temperature. The reduction in chlorophyll content of cells at elevated temperatures and light was compared with the observational bleaching index Degree Heating Days (DHD). As quantified by DHD, the model was found to bleach under similar thermal stress regimes as field studies, except under elevated heterotrophic feeding conditions, which resulted in reduced severity of bleaching over a 90 d period. © 2014, by the Association for the Sciences of Limnology and Oceanography, Inc

    Three-dimensional structure of a swarm of the salp Thalia democratica within a cold-core eddy off southeast Australia

    Get PDF
    Swarms of the salp Thalia democratica periodically occur off southeast Australia following the austral spring bloom of phytoplankton. In October 2008 a filament of upwelled water was advected south by the adjacent East Australian Current and formed a 30km diameter cold-core eddy (CCE). The three-dimensional structure of a subsurface swarm of T. democratica within the eddy was examined using both oblique and vertical hauls and an optical plankton counter (OPC) deployed on a towed body. The CCE displayed distinct uplift of the nutricline and elevated fluorescence. Net samples show the zooplankton community was dominated by T. democratica, comprising 73%-88% of zooplankton abundance. The size distribution of T. democratica measured from net samples was 0.5-5mm and was used to interpret the OPC transects, which showed the swarm formed a 15km diameter disc located 20-40m deep in the center of the eddy. The maximum salp abundance was in the pycnocline and coincided with the subsurface fluorescence maximum. The mean abundance of T. democratica size particles within the disc was 5003 individuals m-3 (ind. m-3), contrasted with only 604 ind. m-3 at the outer edge of the eddy. The vertically concentrated and horizontally constrained disc-shaped salp swarm occurred at the interface of salp-bearing inner shelf water and nutrient-rich upwelled water in a CCE. The physical processes that formed the CCE on the inshore edge of the western boundary current led to the largest density of salps recorded. Copyright 2011 by the American Geophysical Union

    Biological response to circulation driven by mean summertime winds off central Chile: A numerical model study

    Full text link
    A coupled physical-biological model of the waters off central Chile is used to investigate the nitrogen-phytoplankton-zooplankton response to ocean circulation driven by mean summertime winds. The circulation drives the upwelling of middepth water onto the continental shelf and reaches a quasistable rate between days 40 and 60 of the simulation. High-nutrient, low-phytoplankton biomass water is upwelled at the coast, with nutrients being converted to phytoplankton within 3-10 days. A lagged response in zooplankton occurs after 6-30 days, by which time the water has been advected offshore. The magnitude and spatial distribution of phytoplankton biomass and export of organic matter off the continental shelf is sensitive to the zooplankton mortality term. For low zooplankton mortality, phytoplankton biomass on the continental shelf is limited by grazing pressure due to zooplankton, phytoplankton and zooplankton biomass remains low, and the nitrogen advected off the continental shelf in the surface waters is primarily dissolved inorganic nitrogen. When the mortality rate is increased fourfold, an approximately fourfold to fivefold increase is seen in the continental shelf phytoplankton biomass, phytoplankton productivity, and export of organic matter to the deep ocean. This dependence on zooplankton mortality illustrates the potential of top-down control of the shelf production and export of organic matter off the central Chile continental shelf. Copyright 2007 by the American Geophysical Union

    Relative impact of seasonal and oceanographic drivers on surface chlorophyll a along a Western Boundary Current

    Full text link
    Strengthening Western Boundary Currents (WBCs) advect warm, low nutrient waters into temperate latitudes, displacing more productive waters. WBCs also influence phytoplankton distribution and growth through current-induced upwelling, mesoscale eddy intrusion and seasonal changes in strength and poleward penetration. Here we examine dynamics of chlorophyll a (Chl. a) in the western Pacific Ocean, a region strongly influenced by the East Australian Current (EAC). We interpreted a spatial and temporal analysis of satellite-derived surface Chl. a, using a hydrodynamic model, a wind-reanalysis product and an altimetry-derived eddy-census. Our analysis revealed regions of persistently elevated surface Chl. a along the continental shelf and showed that different processes have a dominant effect in different locations. In the northern and central zones, upwelling events tend to regulate surface Chl. a patterns, with peaks in phytoplankton biomass corresponding to two known upwelling locations south of Cape Byron (28.5°S) and Smoky Cape (31°S). Within the central EAC separation zone, positive surface Chl. a anomalies occurred 65% of the time when both wind-stress (τw) and bottom-stress (τB) were upwelling-favourable, and only 17% of the time when both were downwelling-favourable. The interaction of wind and the EAC was a critical driver of surface Chl. a dynamics, with upwelling-favourable τW resulting in a 70% increase in surface Chl. a at some locations, when compared to downwelling-favourable τW. In the southern zone, surface Chl. a was driven by a strong seasonal cycle, with phytoplankton biomass increasing up to 152% annually each spring. The Stockton Bight region (32.25-33.25°S) contained ≥20% of the total shelf Chl. a on 27% of occasions due to its location downstream of upwelling locations, wide shelf area and reduced surface velocities. This region is analogous to productive fisheries regions in the Aghulus Current (Natal Bight) and Kuroshio Current (Enshu-nada Sea). These patterns of phytoplankton biomass show contrasting temporal dynamics north and south of the central EAC separation zone with more episodic upwelling-driven Chl. a anomalies to the north, compared with regular annual spring bloom dynamics to the south. We expect changes in the strength of the EAC to have greater influence on shelf phytoplankton dynamics to the north of the separation zone. © 2013 Elsevier Ltd

    Information content of in situ and remotely sensed chlorophyll-a: Learning from size-structured phytoplankton model

    Full text link
    © 2018 Chlorophyll-a measurements in the form of in situ observations and satellite ocean colour products are commonly used in data assimilation to calibrate marine biogeochemical models. Here, a two size-class phytoplankton biogeochemical model, with a 0D configuration, was used to simulate the surface chlorophyll-a dynamics (simulated surface Chl-a) for cyclonic and anticyclonic eddies off East Australia. An optical model was then used to calculate the inherent optical properties from the simulation and convert them into remote-sensing reflectance (Rrs). Subsequently, Rrs was used to produce a satellite-like estimate of the simulated surface Chl-a concentrations through the MODIS OC3M algorithm (simulated OC3M Chl-a). Identical parameter optimisation experiments were performed through the assimilation of the two separate datasets (simulated surface Chl-a and simulated OC3M Chl-a), with the purpose of investigating the contrasting information content of simulated surface Chl-a and remotely-sensed data sources. The results we present are based on the analysis of the distribution of a cost function, varying four parameters of the biogeochemical model. In our idealized experiments the simulated OC3M Chl-a product is a poor proxy for the total simulated surface Chl-a concentration. Furthermore, our result show the OC3M algorithm can underestimate the simulated chlorophyll-a concentration in offshore eddies off East Australia (Case I waters), because of the weak relationship between large-sized phytoplankton and remote-sensing reflectance. Although Case I waters are usually characteristic of oligotrophic environments, with a photosynthetic community typically represented by relatively small-sized phytoplankton, mesoscale features such as eddies can generate seasonally favourable conditions for a photosynthetic community with a greater proportion of large phytoplankton cells. Furthermore, our results show that in mesoscale features such as eddies, in situ chlorophyll-a observations and the ocean colour products can carry different information related to phytoplankton sizes. Assimilating both remote-sensing reflectance and measurements of in situ chlorophyll-a concentration reduces the uncertainty of the parameter values more than either data set alone, thus reducing the spread of acceptable solutions, giving an improved simulation of the natural environment

    The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia

    Full text link
    Warm-core eddies (WCEs) formed from the East Australian Current (EAC) play an important role in the heat, mass and biogeochemical budgets of the western Tasman Sea. The development and separation of an EAC WCE during July-December 2008 was observed using remotely sensed temperature, ocean colour and sea-level elevation, three Argo floats, a shipboard CTD, a shelf mooring array and a 15-day deployment of a Slocum glider. The eddy formed from an EAC meander during the first half of 2008 and in late August had a ~275m deep surface mixed layer. In the two months before separation in early December, fresher and warmer EAC water flooded the top of the eddy, submerging the winter mixed layer. The rate of vertical transport due to submergence was estimated to be between 1 and 6Sv, at the time accounting for a significant fraction of the mean southward flow of the EAC. The core of the eddy had a surface chlorophyll a concentration of <0.4mgm-3 throughout the observations. A 20-40m thick pycnocline formed at the interface of the flooding surface waters and the submerged layer. Chlorophyll a concentration in the pycnocline ranged from 0.5 to 2mgm-3, with depth-integrated concentration ranging between 25 and 75mgm-2. The development of a sub-surface maximum suggests that flooding increased light levels in the pycnocline. Elevated levels of coloured dissolved organic matter in the submerged layer correspond to oxygen depletion, suggesting respiration of organic matter. A comparison is made with observations from WCEs in 1978 and 1997 in which, unusually, surface flooding did not occur, but solar heating stratified the top 50m. In the two eddies with surface capping, surface chlorophyll a concentrations were an order of magnitude higher than the 2008 flooded eddy, but depth-integrated chlorophyll a was similar. These findings suggest that EAC WCEs with relatively shallow surface flooding contain more phytoplankton biomass than surface images would suggest, with the vertical position of the chlorophyll a maximum depending on whether, and to what depth, the winter surface mixed layer is submerged. © 2010 Elsevier Ltd

    The exposure of the Great Barrier Reef to ocean acidification

    Full text link
    © 2016, Nature Publishing Group. All rights reserved. The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report

    Inheritance of Telomere Length in a Bird

    Get PDF
    Telomere dynamics are intensively studied in human ageing research and epidemiology, with many correlations reported between telomere length and age-related diseases, cancer and death. While telomere length is influenced by environmental factors there is also good evidence for a strong heritable component. In human, the mode of telomere length inheritance appears to be paternal and telomere length differs between sexes, with females having longer telomeres than males. Genetic factors, e.g. sex chromosomal inactivation, and non-genetic factors, e.g. antioxidant properties of oestrogen, have been suggested as possible explanations for these sex-specific telomere inheritance and telomere length differences. To test the influence of sex chromosomes on telomere length, we investigated inheritance and sex-specificity of telomere length in a bird species, the kakapo (Strigops habroptilus), in which females are the heterogametic sex (ZW) and males are the homogametic (ZZ) sex. We found that, contrary to findings in humans, telomere length was maternally inherited and also longer in males. These results argue against an effect of sex hormones on telomere length and suggest that factors associated with heterogamy may play a role in telomere inheritance and sex-specific differences in telomere length

    A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects

    Get PDF
    DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera) from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3–24.7% (mean: 12.5%), while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species
    • …
    corecore